

Data Transmission Protocol

for the ARE H5

Geschäftsführer | Managing Director Reiner Wagner

Sitz der Gesellschaft | Headquarter Ulm, Germany

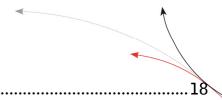
Amtsgericht | Local Court Ulm, Germany HRB 3423 USt-IdNr. DE 183095060 Steuer-Nr. | Tax No. 88001/11616

 Bankverbindung
 Banking account
 AEG Identifikationssysteme GmbH

 Sparkasse Ulm
 Hörvelsinger Weg 47, D-89081 Ulm

 BLZ: 630 500 00 | Kto.-Nr.:21072952
 F+49 (0)731 140088-0

 SWIFT Code: SOLADES1ULM
 F:+49 (0)731 140088-0


 IBAN-Nr.: DE31 6305 0000 0021 0729 52
 E-mail: info@aegid.de, www.aegid.de

AEG Identifikationssysteme GmbH Hörvelsinger Weg 47, D-89081 Ulm P: +49 (0)731 140088-0 F: +49 (0)731 140088-9000

1	INTRODUCTION							
2	SET OF COMMANDS							
3	INTERFACE PARAMETERS							
4	PROTOCOL, CONTROL CHARACTER							
5	CHECKSUM CRC							
6	TELEGRAM STRUCTURE							
7 R0	7 SIMPLIFIED READ OUT PROCEDURE, WITHOUT PROGRAMMING THE CRC- Routine							
8	THE COMMAND STRUCTURE IN DETAIL (SYNTAX, FUNCTION)10							
8.1	Is the database memory empty?10							
8.2	Clear database memory10							
8.3	Set pointer to first full data set10							
8.4	Read new data set11							
8.5	Read last data set11							
8.6	Set pointer to first empty data set in database memory11							
8.7	Write data set12							
8.8	Software Version12							
8. 9	Exit communicatio mode12							
9	PARAMETERIZATION COMMANDS							
9.1	Reader settings13							
9.2	Text association to attributes16							
9.3	Date and time17							
10	NOTIFICATION OF CHANGES18							

1 Introduction

This document describes the protocol which is used for data exchange to and from the hand held reader ARE H5. It is applicable from firmware Version 607^1 onward.

Important note: Communication with the ARE H 5 is possible only, when it is in the operating mode "Database / PC".

2 Set of commands

Following commands are available:

- ET: Check, if database memory is empty
- EC: Clear database memory
- RP: Set dataset pointer to first stored dataset
- RN: Read stored dataset and increase dataset pointer
- RL: Read stored dataset again without increasing the pointer = repeat the previous reading (RN)
- WP: Set dataset pointer to the next free position in the memory
- W: Write dataset into database to the actual dataset pointer position and increase pointer
- SV: Read software version
- XT: Stop communication, abort operation mode "Database / PC"
- R: Set date and time
- T: Associate text (up to 14 characters) with attribute 'A' to 'Z' (display 'Stable' in stead of 'A' e.g.)

A detailed description of these commands is given in chapter 7 and 8.

¹ valid for equipment shipped after 15. Nov 2000.

3 Interface parameters

The data is transferred in the following format 19200baud, 8 data bits, no parity check, 1 stop bit, no hardware handshake (RTS, CTS), no control of data flow (e.g. Xon/Xoff)

4 Protocol, Control character

All the commands in operation mode "Database / PC" have the following structure:

STX, "command in ASCII", "CRC in ASCII", ETX

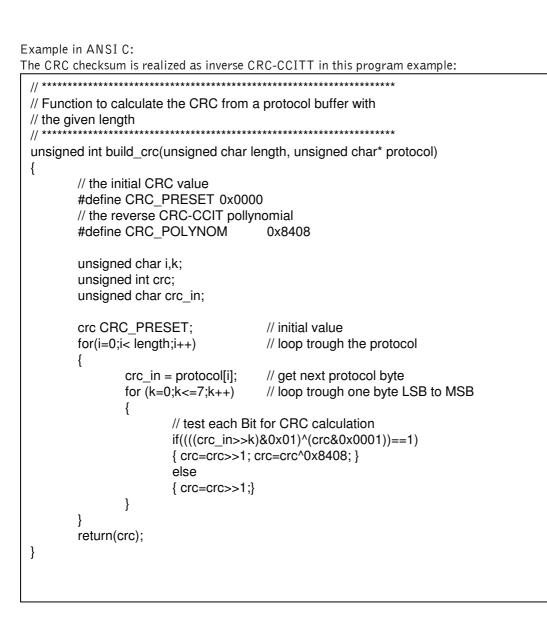
The following answers are possible:

A record with the structure given above ACK BEL NAK

Except STX and ETX, the total content of the commands are composed in ASCII characters. This procedure has been chosen explicitly, as a large number of host Operating Systems react with their own functions, when they see characters outside of 0x20 to 0x7F.

The CRC is applied only on the characters of the "command", STX and ETX are not included. The 4 nibbles of the CRC are transmitted in form of 4 ASCII characters. By doing so, the CRC is in conformance with the ASCII standard as well.

Control characters	Hex code	Designation	Function
STX	0x02	Start Of Text	Begin of a telegram
ETX	0x03	End Of Text	End of a telergram
BEL	0x07	Buzzer (bell)	Signaling a specific condition, e.g. if the interrogated memory site is not occupied
CR	0x0D	Carriage return	End of line
ACK	0x06	Acknowledge	The command has been executed successfully
NAK	0x15	Negative Acknowledge	The command was not recognized and consequently has not been executed (syntax error)



5 Checksum CRC

The checksum (CRC=cyclic redundancy check) is generated using the ISO (or CCITT) standardized polynomial: 0x1021; $P(X) = X^{16} + X^{12} + X^5 + 1$.

CRC-CCIT Polynomial	0x1021
CRC order	16 Bit
Start value CRC	0x0000
Data stream	Every data byte is mirrored (from LSB to MSB)
CRC	Mirror CRC result before final XOR

The checksum is always composed out of 4 hex characters (values from 0x0000 to 0x FFFF). These 4 hex characters are transmitted in ASCII code from '0' .. '9' and 'A' to 'F'.

Example:

The checksum 0E2A is transmitted as chr(0x30), chr(0x45), chr(0x32), chr(0x41).

6 Telegram structure

1 byte for attribute (# = no attribute, 'A' ... 'Z') - transmitted as 1 ASCII-character

6 byte for date/clock in BCD-format - transmitted as 12 ASCII- characters

1 byte for code length (1 ... 16) - transmitted as 1 ASCII- character '0' .. '9', 'A' .. 'F'

Example: length = 16; length - 1 = 15; hex value = 0xF;

ASCII-character =
$$F' = chr(0x46)$$

8 byte for the code (up to 16 nibbles, starting left) - transmitted as 16 ASCII- characters 1 byte for type of transponder transmitted as 1 ASCII- character:

- 0 = unknown type
- 1 = ISO-Fdx
- 2 = Marin, ASK 64 Bit
- 3 = Trovan
- 4 = Datamars
- 5 = Destron
- 6 = ISO-Hdx
- 7 = Hitag 1, Hitag S
- 8 = Hitag 2
- 9 = Pontech
- A = PSK 2
- B = PSK 1 C = Diehl Aircabin
- D = BDE Fdx
- E = BDE Hdx
- F = ISO 14443A 4 Byte G = ISO 14443A 7 Byte
- H = ISO 14443A 7 H
- $H = 130 \ 1569.$ $U = EM \ 4305$

14 byte for text (up to 14ASCII's in the range 0x20 ... 0x7F) - transmitted as 14 ASCII- characters

 1
 2
 3
 4
 5
 6
 7
 8
 9
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 4

Example: description of a record – (sequence of characters at the interface):

STX 'K010101000133F2858997D3A4F00001_____46F6' ETX

The meaning is as follows: K = Attribute 'K' 010101 = 1. January 2001 000133 = 00:01:33 (hh:mm:ss) F = Code length = 16 2858997D3A4F0000 = Transponder code 1 = Type of transponder: ISO-FDX ______ = 14 characters for transponder code associated text (not used = '_') 46F6 is the relevant CRC-checksum

7 Simplified read out procedure, without programming the CRC-routine

In order to get a quick output of data from the hand held reader, programming the CRC may be omitted. In this case the following values have to be used:

Command	CRC in Hex
`ET'	0x2C7F
`EC'	0x 4841
`RP'	0x B2C2
`RN′	0x4B3D
`RL'	0x682F
`WP′	0xCC7A
`SV'	0xCE2C
`XΤ′	0x0996

Example:

In order to read the software version out of the hand held reader, the following command has to be sent from the PC to the reader: STX 'SVCE2C' ETX. In case of a valid result, the answer is for example STX '610CE8E' ETX, where '610' stands for the Version and 'CE8E' for the check sum belonging to it. The disadvantage of this method is: The command 'W' can not be executed because the check sum is computed out of the entire Record (including the command and the code number). The consequence is, that every command in conjunction with a code number has is own check sum.

8 The command structure in detail (Syntax, function)

8.1 Is the database memory empty?

Command syntax:

STX, "ET", "CRC", ETX

Possible answers of the reader:

ACK = Database contains data sets BEL = Database is empty NAK = Error

With this command it can be checked if there are data sets in the reader database.

8.2 Clear database memory

Command syntax:

STX, "EC", "CRC", ETX

Possible answers of the reader:

ACK = Command executed NAK = Error

This command erases all data sets out of the database memory of the ARE H5.

8.3 Set pointer to first full data set

Command syntax:

STX, "RP", "CRC", ETX

Possible answers of the reader:

ACK = Command executed NAK = Error

This command sets the data set pointer to the first full data set in database memory.

It is absolutely necessary, that this command is executed, before a read out or clearing command is given. Otherwise the position of the Pointer is undefined.

8.4 Read new data set

Command syntax:

STX, "RN", "CRC", ETX

Possible answers of the reader:

STX, "Data set in ASCII", "CRC in ASCII", ETX NAK = Error

This command asks for the data set on actual pointer position. After reading the data set pointer is increased. This way next "RN" command reads the next data set.

8.5 Read last data set

Command syntax:

STX, "RL", "CRC", ETX

Possible answers of the reader:

STX, "Data set in ASCII", "CRC in ASCII", ETX NAK = Error

The reader repeats the output of the data set that was transmitted with the previous "RN" command. The position of the pointer remains unchanged (as set by the previous "RN" command).

8.6 Set pointer to first empty data set in database memory

Command syntax:

STX, "WP", "CRC", ETX

Possible answers of the reader:

ACK = Command executed NAK = Error

It is absolutely necessary, that this command is executed, before a new data set is stored in the reader. Otherwise the position of the pointer is undefined and already stored records may be overwritten.

8.7 Write data set

Command syntax:

STX, "W", "Data set in ASCII", "CRC in ASCII", ETX

Possible answers of the reader:

ACK = Command executed NAK = Error

This command writes the data set into the database memory, provided that length, syntax, and CRC have been identified as true. After completion, the pointer is incremented. Consequently at the next "W" command the new record will be written into the next position.

8.8 Software Version

Command syntax:

STX, "SV", "CRC", ETX

Possible answers of the reader:

STX, "Software version in ASCII", "CRC in ASCII", ETX NAK = Error

This command asks for the software version of the reader.

8.9 Exit communicatio mode

Command syntax:

STX, "XT", "CRC", ETX

Possible answers of the reader:

ACK = Command executed NAK = Error

This command aborts the operation mode "Database / PC" of the reader.

9 Parameterization commands

9.1 Reader settings

In operation mode "Database / PC" all parameters of the reader are accessible. Some of them can be changed in the menu of the reader. All other parameters can only be changed by the PC with the communication described here.

For writing a parameter the command "s" is used. For reading "S" is the right command. Every reader parameter has its address and range of values. It is transmitted as follows:

Command syntax writing:

STX, "s", "Address = 3xASCII-chr. ", "Value = 2xASCII-chr.", "CRC = 4xASCII-chr.", ETX Address = 12 bit, Parameter value = 8 bit

Possible answers of the reader: ACK = Command executed NAK = Error (Command or parameter)

```
Example: Timeout Reading (Address 0x010) to 25 cycles = set to approx. 2,25 seconds (25 = 0x19):
<STX>s01019C872<ETX>
CRC = 0xC872
```

Command syntax reading:

STX, "S", "Address = 3xASCII-chr.", "CRC = 4xASCII-chr.", ETX Address = 12 bit

Possible answers of the reader: STX, "Wert 2xASCII-chr.", "CRC 4xASCII-chr.", ETX NAK = Fehler

Example: read out Timeout Reading (Address 0x010): <STX>S010E88C<ETX> CRC = 0xE88C Answer: <STX>328E5B<ETX> Value = 0x32 = 50 cycles = aprox. 4,5 seconds CRC = 0x8E5B

Address [hex]	Name	Meaning	Default [hex]	Range [hex]
0x000	Attribute	0x00 = No attribute 0x01 = ,A' 0x02 = ,B'	0x00	0x000x14
		0x1A = ,Z'		
0x001	Operation mode	0x00 = Standard 0x01 = Daten -> RS232 0x02 = Read / Transfer 0x03 = Database / PC 0x04 = Data -> Bluetooth ²	0x00	0x000x04
0x002	Interface	0x00 = RS232, USB or Bluetooth 0x01 = IRDA	0x00	0x000x0
0x003	Language	0x00 = English 0x01 = German	0x01	0x000x0
0x004	Code format	0x00 = Hexadecimal 0x01 = ISO Animal 0x02 = ISO Industry 0x03 = BDE (german waste management format) 0x04 = TRUTEST 0x05 = ISO Animal original ³	0x01	0x000x0
0x005	Lock up reader	0x00 = Off 0x01 = On	0x00	0x000x0
0x006	Reserved		0x02	0x000x0
0x007	Reserved		0x00	0x000x01
0x008	Multiple data sets	0x00 = Off, data sets have to differ at least in attribute to be saved in database 0x01 = On, the same transponder numbers are saved multiple in database	0x00	0x000x0
0x009	Type output	 0x00 = Off 0x01 = On, in operation mode "Data -> RS232", "Read / Transfer" and "Data -> Bluetooth" a 3 character short cut for the transponder type and a space character is sent in front of transponder code via serial interface (if the code format is not "TRUTEST") Possible short cuts are: FDX = ISO full duplex ASK = ASK 64 Bit TRO = Trovan DAT = Datamars DES = Destron HDX = ISO half duplex PK2 = PSK 2 PK1 = PSK 1 	0x00	0x000x0

² In ARE H5 software versions, that support Bluetooth interface, e.g. 6.35 or B2.00003
 ³ Display attribute and text in stead of retagging counter and additional information, since ARE H5 software version 6.35

-----14/18------

0x00A	Noread output	0x00 = Off	0x00	0x000x01
		0x01 = 0n, in operation mode "Data -> RS232", "Read / Transfer" and "Data -> Bluetooth" the text "NoRead" is sent after a failed		
		reading attempt via serial interface		
0x00B	Reserved		0x01	0x000x01
0x00C	Algorithm	0x00 = All Algorithms are deactivated 0x01 = Only Trovan is on 0x02 = Only ASK 64 Bit on 0x04 = Only Datamars on 0x08 = Only Destron on 0x10 = Only ISO HDX on 0x20 = Only ISO FDX on 0x40 = Only PSK 2 on 0x80 = Only PSK 1 on 0x03 = Trovan and ASK 64 Bit on 0xFF = All Algorithms are activated	0xFF	0x000xFF
0x00D	Reserved	OXTT - All Algorithins are activated	0xFF	0x000xFF
0x00E	TimeOut (Main)	After this time the ARE H5 is switched off, if there	0x0A	0x010xFF
OXOUL	4	is no user intervention, and the device is not in menu mode, in seconds, default 10s, range 1255s	UXU/Y	
0x00F	TimeOut (Menu) ⁵	After this time the ARE H5 is switched off, if there is no user intervention, and the device is in menu mode, in seconds, default 20s, range 1255s	0x14	0x010xFF
0x00E	Time Out	After this time the ARE H5 is switched off, if there	0x0C	0x010xFF
0x00F	6	is no user intervention, in seconds, default 12s, range 165535	0x00	0x000xFF
0x010	TimeOut (Rea- ding)	Number of reading attempts, one attempt takes approx. 90ms, default 50 cycles	0x32	0x010xFF
0x011	Reserved		0x01	0x000x01
0x012	Buzzer	0x00 = Off 0x01 = On	0x01	0x000x01
0x013	Time output	<pre>0x00 = Off 0x01 = On, in operation mode "Data -> RS232", "Read / Transfer" and "Data -> Bluetooth" actual time stamp and a space character is sent in front of transponder code via serial interface (if the code format is not "TRUTEST") e.g. "24.12.10 11:55:00"</pre>	0x00	0x000x01

⁴ Until ARE H5 software version 6.22 and 6.35
 ⁵ Until ARE H5 software version 6.22 and 6.35
 ⁶ Since ARE H5 software version V2.00005 and B2.00003
 ⁷ In ARE H5 software Bluetooth versions since 6.35

0x014	Handshake RS232 ⁸	 0x00 = Off, in operation mode "Data -> RS232" and "Read / Transfer" a read data set is sent via serial interface, if the telegram is received by the communication partner is not verified 0x01 = On, the transmission of a data set begins with a empty telegram (<stx> <etx>), if the communication partner is answering (<stx> <ack> <etx>), data is sent, reception is verified again by an answer of the communication partner (<stx> <ack> <etx>).</etx></ack></stx></etx></ack></stx></etx></stx> 	0x00	0x000x01
0x015	Bluetooth Role ⁹	0x00 = Master, the Bluetooth connection is initiated by the ARE H5 0x01 = Slave, the Bluetooth partner cares for connection establishment	0x00	0x000x01
0x016	Handshake Bluetooth ¹⁰	0x00 = Off 0x01 = On Same function as "Handshake RS232" for wireless communication	0x01	0x000x01

9.2 Text association to attributes

The reader provides 27 attributes. They are characterized with "#" (= no attribute) and the capital letters "A" to "Z". To every attribute a text, up to 14 characters, can be allocated:

Example:

If "Stable" is allocated to "A", "Pasture" to "B" and "Forage" to "C", in the ARE H5 menu "Set Attribute" the followings attributes are available:

"#" -> "Stable"-> "Pasture" -> "Forage" -> "D" -> "E" -> ... -> "Z"

The allocated attribute text is shown in the lower ARE H5 display line, right-aligned, after reading a transponder. Please be aware of the transponder type or a transponder number allocated text is also shown in the lower display line, left-aligned. The display line has 16 characters, the transponder text has maximal 14 characters (left-aligned) and the attribute text has maximal 14 characters, maximal 12 of them are displayed (right-aligned). This way attribute text can overlap transponder text.

⁸ In the ARE H5 software Bluetooth versions since 6.35

 ⁹ In the ARE H5 software Bluetooth versions since 6.35
 ¹⁰ In the ARE H5 software Bluetooth versions since 6.35

The related command to set attribute text is:

STX, "t", "Attribute 1xASCII-chr.", "Attribute text 3-14xASCII-chr.", "CRC 4xASCII-chr.", ETX.

Possible answers of the reader: ACK = Command executed NAK = Error

Format:

The attribute token is "#" or "A" to "Z", the text must be 3 to 14 ASCII characters long. If no attribute text shall be displayed but only the attribute token (default setting), the command "t" with the desired attribute token and the attribute text 3 underline characters "_" must be sent.

Example:

To replace "A" with the text "Stable", the following command has to be sent: <STX>tAStable7F7F<ETX> with t = Command, A = Attribute, Stable = Text and CRC = 7F7F.

To delete the text of attribute "A" again, the following command has to be sent: $<STX>tA__0186<ETX>$ with t = Command, A = Attribute, ___ = Text (no attribute text) and CRC = 0186.

To read the attribute text from the ARE H5, the following command has to be sent:

STX, "T", "Attribute 1xASCII-chr.", "CRC 4xASCII-chr.", ETX Answer: STX, "Attribute 1xASCII-chr.", "Value 1-14xASCII-chr.", "CRC 4xASCII-chr.", ETX

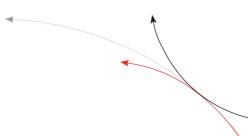
Example:

To read the attribute text of attribute "A", the following command has to be sent: <STX>TAE71A<ETX> with T = Command and A= Attribute and CRC = E71A

Answer: <STX>A538D<ETX> with A = Attribute und CRC = 538D, no attribute allocated to "A" or <STX>StableB90B<ETX> with Stable = Attribute and CRC = B90B

9.3 Date and time

In operation mode "Database / PC" date and time of the ARE H5 can be read and written.


To set the clock of the reader, the command "r" is used:

Command syntax writing: STX, "r", "Date and time in ASCII BCD", "CRC 4xASCII-chr.", ETX Date and time are transmitted in ASCII format of the BCD coding.

Possible answers of the reader: ACK = Command executed NAK = Error

Example: Set the clock of the reader to 15. November 2002, 10:02:16. <STX>r1511021002162CA5<ETX> with CRC = 2CA5.

To get date and time from the reader, the command "R" is used:

Command syntax reading: STX, "R", "CRC 4xASCII-chr.", ETX

Possible answers of the reader: STX, "Date and time in ASCII BCD", "CRC 4xASCII-chr.", ETX Date and time are transmitted in ASCII format of the BCD coding. NAK = Error

Example: <STX>R7197<ETX> with CRC = 7197 <STX>02091008333768A0<ETX> with CRC = 68A0 ARE H5 date and time is 2. September 2010, 08:33:37 (hh:mm:ss)

10 Notification of changes

Release	Date	Changes	Author
3.1	09/10/2003		Genz
3.2	09/02/2010	New format, additional for new software version	МК
3.3	09/29/2010	Translation from the German version	МК
3.4	08/17/2012	Further data carrier types	МК
3.5	06/09/2015	Further data carrier types	МК
3.6	10/06/2017	Translation of german text in english document	МК

11 Contacts

To improve our products, as well as its documentation is our permanent effort. For any questions, feedback or comments please call:

Tel.: ++49 (0)731-140088-0

Fax: ++49 (0)731-140088-9000

e-mail: sales@aegid.de

http:\ <u>www.aegid.de</u>